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Computation of first order approximation

» Perturbation approach: recovering a Taylor expansion of the
solution function from a Taylor expansion of the original
model.

» A first order approximation is nothing else than a standard
solution thru linearization.

> A first order approximation in terms of the logarithm of the
variables provides standard log-linearization.



General model

E: {f(yes1, Yt Ye-1,U)} =0

E(us)) = 0
E(uuy) = X,
E(ued,) = 0 t#7

T

y : vector of endogenous variables

u : vector of exogenous stochastic shocks



Timing assumptions

Ee {f(yes1,¥t,ye-1,u)} =0

» shocks u; are observed at the beginning of period t,

» decisions affecting the current value of the variables y;, are
function of

» the previous state of the system, y;_1,
» the shocks u;.



The stochastic scale variable

Et {f()’t+1,)/t7)/t—1a ut)} =0

> At period t, the only unknown stochastic variable is y;y1,
and, implicitly, usy1.

» We introduce the stochastic scale variable, o and the auxiliary
random variable, €;, such that

Ut41 = O€t41



The stochastic scale variable (continued)

E(er) =0 (1)
E(eed) = 5. )
E(ere))=0 t#7 (3)

and
Y, =o’%,



Solution function

Ve = &(Ye-1, ut,0)

where o is the stochastic scale of the model. If ¢ = 0, the model is
deterministic. For o > 0, the model is stochastic.

Under some conditions, the existence of g() function is proven via
an implicit function theorem. See H. Jin and K. Judd “Solving
Dynamic Stochastic Models”

(http://bucky.stanford.edu/papers/PerturbationMethodRatEx.pdf)


http://bucky.stanford.edu/papers/PerturbationMethodRatEx.pdf

Solution function (continued)

Then,

Yeri = &Y, Uet1,0)
= glg(yt-1,ut,0), Ur41,0)
F(ye—1, Ut Uty1,0)
= f(gg(yt-1,ut,0),ur11,0),8(yt-1, Ut 0), yr-1, )

E: {F(ytfla Uz, U€t+170)} =0



The perturbation approach

» Obtain a Taylor expansion of the unkown solution function in
the neighborhood of a problem that we know how to solve.

» The problem that we know how to solve is the deterministic
steady state.

» One obtains the Taylor expansion of the solution for the
Taylor expansion of the original problem.
» One consider two different perturbations:

1. points in the neighborhood from the steady sate,
2. from a deterministic model towards a stochastic one (by
increasing o from a zero value).



The perturbation approach (continued)

» The Taylor approximation is taken with respect to y;_1, u;
and o, the arguments of the solution function

Yt = g(yt—h Ut,U)-

> At the deterministic steady state, all derivatives are
deterministic as well.



Steady state

A deterministic steady state, y, for the model satisfies
f(}_/a}_/a)_/70) =0

Furthermore,
y=g(y,0,0)



First order approximation

Around y:

E; {F(l)(yt_l, ut,aet+1,a)} -
Et{f(y’y’)_’7 0) + fy, (gy (8 y + guu+ go0) + guoe + gaa)
o (g9 + guu + g50) + £,_§ + fuu}
=0
of _ of

1 v v; !
W'thy_Yr 1=V u=up, € = e, fr = 50 iy = 50

_of , _ og %
f a}’t 1’ fu dut’ 8y = Oyt_1' 8u = out’ 8o = .




Taking the expectation

E, {F(l)(yt% U, tewd, U)} _

f(y,7,7,0) + 1y, (8 (8yF + guu + 850) + 850)
o (9 + guti + 850) + 9 + fuu}
fy, 88y + o8y + 1, ) 7+ (f. 8/8u + fogu + fu) u

+ f)’+gyg0 + @oga)a
=0



Solving for g,, g, and g,

» Dynare uses Klein's approach and the real generalized Schur
decomposition.

» This solution verifies Blanchard and Kahn conditions for the
existence of a unique stable trajectory.

» Dynare reports an error if these conditions are not satisfied in
a given model.

» g, = 0: certainty equilvalence.

» The stable manifold is selected at first order, eliminating
explosive roots from the solution.



First order approximated decision function

Ye=y+gy+eguu

E{ww} =y
Y, = gyzyg),/+02guzegl,;



Second order approximation of the model

E: {F(Z)(,Vt—lv Uty €t41, G)} =
Et{F(l)(YI—lv U, Upy1, 0)
+0.5(Fy_y_ (5 ®9) + Fuulu @ u) + Fyy (' @ &) + Fogo”)
(G @0+ Fy_ (3 ® o)+ Fy_ 050+ Fou(u® oc) + Fuguo + Fy ¢ o}
= Et{F(l)(}’t—l)UnErJrl:U)}
+0.5(Fy_y_ (0 ®9) + Fuu(u ® 0) + Fyr y (0°£0) + Fog o)

+Fy_ (Y ®u)+Fy_oy0 + Fuouo
0



Representing the second order derivatives

The second order derivatives of a vector of multivariate functions is
a three dimensional object. We use the following notation

9%F, 0%F, 9%F, 82F ]
Ox10x1 Ox10x0 e Ox00x1 Tt OXpOxn
O2F 0%F, 0%F, 0%F, 0%F,
— Ox10x1 Ox10x0 te Ox00x1 e OXpnOXn
@Xax . .. . . .
PFn  0%*Fm ?Fry ?Fry
L Ox10x1  Ox10xx " °° Oxp0x1 " OxpOxn |




Composition of two functions

Let

then,

0*f  Of 9%g  O°f <ag 8g)

9s0s — Dy 9s0s | aydy \9s © 0s



Recovering g,

Fyy = f,(gy(8 ®8)+8/8&y)+ frgy+B
=0

where B is a term that doesn't contain second order derivatives of

()

The equation can be rearranged:

(fy 8y + fyo) 8y + fy 8,/ (8y ® 8gy) = —B

This is a Sylvester type of equation and must be solved with an
appropriate algorithm.



Recovering gy,

vou =ty (8yy(8y ® &u) + 8y8yu) + fro8yu + B
=0

where B is a term that doesn’t contain second order derivatives of

()

This is a standard linear problem:

gyu=—(fy, 8 + fyo)_1 (B + fy, 8yy(8y ® 8u))



Recovering gu.

Fuu = f}’+ (g}’y(gu ® gu) + gyguu) + fyog”” +B
=0

where B is a term that doesn’t contain second order derivatives of

()

This is a standard linear problem:

g =~ (frogy + f) " (B + .8y (8u ® £4))



Recovering g5, Suo

Fyo = f.8/8 0+ w80
=0
Fua = fy+gygu0 + fyogua

|
o

as g = 0. Then
8yoc = 8uoc = 0



Recovering g,

Foo + FuuwXe = fy+ (gao + gyg(ra) + fyoga(r

+ (fy+)/+ (gu ® gU) + fy+gUU) X
=0

taking into account g, = 0.
This is a standard linear problem:

8oo = — (fy+(l + g}/) + 6’0)71 (f;’+}’+(gu ® g”) + f;’+g“”) .



Second order decision functions

Ve =7 +0.58500° + g9 + guu + 0.5 (8 (¥ ® 9) + guu(u @ 1)) + gu(y ® u)

We can fix o = 1.
Second order accurate moments:

Y, = &Y, +0°gureg,
E{y;} = 7+(—g)" (0-5 (gag +gyT, + guuie))



Three different concepts

1. (deterministic) steady state
2. risky steady state

3. unconditional expectation



Deterministic steady state

A linearized decision rule cuts the main diagonal at the deterministic steady state (Kss).




Quadratic decision rule

In general, the decision is shifted at the deterministic steady state: agents don't decide to stay at the deterministic

steady state.




Quadratic decision rule

The distance between A and B is g5 /2




Risky steady state

The risky steady state, Ksss, describes the point where agents decide to stay in absence of shocks this period, but

taking into account the distibution of shocks in the future.




Unconditional expectation

Because of Jensen inequality, the unconditional expectation, E(K), is somewhere below the quadratic decision rule,

but not on it. In absence of shocks, agents don't decide to go to the unconditional expectation.




Higher order approximation (1)

The Fa di Bruno formula for the kth derivative of the composition
of two functions, f(z(s)):

J

a1 -Qj Z /31 Bi Z H [z, ‘cm‘]a(cm

I=1 ceM;; m=1

where M, ; is the set of all partitions of the set of j indices with /
classes, |.| is the cardinality of a set, ¢, is m-th class of partition
¢, and a(cpy) is a sequence of a's indexed by ¢p,. Note that
My ={{1,...,j}} and M;; = {{1},{2},...,{j}}. In order to

keep the formulas compact, we use o, for o ... ap.



Higher order approximation (I1)

In order to recover the kth order derivatives of the decision
function, gy, it is necessary to solve the following equation:

(fy+gy + f;’o)gyk + f;/+gy’<g}(/g)k =-B

where g}?k is the kth Kronecker power of matrix g, and B is a
term that doesn't contain the unknown k-order derivatives of
function g(), but only lower order derivatives of g() and first to
k-order derivatives of f().



Further issues

> Impulse response functions depend of state at time of shocks
and history of future shocks.
» For large shocks second order approximation simulation may
explode
» pruning algorithm (Sims)
» truncate normal distribution (Judd)



An asset pricing model

Urban Jermann (1998) “Asset pricing in production economies”
Journal of Monetary Economics, 41, 257-275.

> real business cycle model

» consumption habits

> investment adjustment costs

> compares return on several securities

> log-linearizes RBC model + log normal formulas for asset
pricing



Firms

The representative firm maximizes its value:

oo

&> ptrEp,
1k Mt
with
Y = AKE (XN
Dt = Yt_WtNt—lt
Ke = (1—0)Keq+ [ — ('t >li+a K,
t t—1 1_€ Kt—l 2 t—1
logA: = plogAi_1+ e

Xe = (1+g)Xi1



Households

The representative households maximizes current value of future
utility:

> 1-7
C — XCt—l)
£ k( t
‘ Z & 1—-7
k=0
subject to the following budget constraint:
WiN: + Dy = G

and with N; = 1. Good market equilibrium imposes

Yt:Ct+/f



Interest rate

Risk free interest rate:

1
re =

where p; is the utility of a marginal unit of consumption in period
t.

pe = (¢t — xce-1/8) " — xB(gce+1 — xce) "



Rate of return

Rate of return of firms




jermann98.mod

//

// 1. Variable declaration

//

var c, d, erpl, i, k, r1, rfl, w, y, z, mu;
varexo ez;



(continued)

//

// 2. Parameter declaration and calibration

/7
parameters

alf
chihab
xi
delt

g

tau
rho

al
a2

betstar
bet

alf, chihab, xi, delt, tau, g, rho, al, a2, betstar, bet;

0.36; // capital share in production function

0.819; // habit formation parameter

1/4.3; // capital adjustment cost parameter

0.025; // quarterly deprecition rate

1.005; //quarterly growth rate (note zero growth =>g=1)
5; // curvature parameter with respect to ¢

0.95; // AR(1) parameter for technology shock

= (g-1+delt)~(1/xi);

(g-1+delt)-(((g-1+delt) ~(1/xi))/(1-(1/xi)))*
((g-1+delt)~(1-(1/xi)));

g/1.011138;

betstar/ (g~ (1-tau));



(continued)

/7

// 3. Model declaration

//

model;
gxk
d

W

y

c
mu
mu

log(z)

(1-delt)*k(-1) + ((al/(1-1/xi))*(g*i/k(-1))"~(1-1/xi)+a2)*k(-1);
y-w- i

(1-alf) *y;

z*g~ (-alf)*k(-1) "alf;

w o+ d;
(c-chihab*c(-1)/g) " (-tau) -chihab*bet*(c(+1) *g-chihab*c) ~ (-tau) ;
(betstar/g)*mu(+1)* (alx(gxi/k(-1))~(-1/xi))*(alf*z (+1)*g" (1-alf)*
(k™ (alf-1))+((1-delt+(al/(1-1/x1)) *(g*i(+1) /k) ~(1-1/xi)+a2))/
(al*(g*i(+1) /&)~ (-1/xi))-g*i(+1) /k);

= rho*log(z(-1)) + ez;



(continued)

rfl = 1/expecation(0) (betstar/g)*mu(+1)/mu);

rl = (al*(gxi/k(-1))"~(-1/xi))*(alf*z(+1)*g~ (1-alf)* (k" (alf-1))+
(1-delt+(al/(1-1/xi))*(g*i(+1) /k) "~ (1-1/xi)+a2)/
(al*(g*i(+1)/k) "~ (-1/xi))-g*i(+1)/k);

erpl = rl - rfl;



(continued)

steady_state_model;

rfi (g/betstar) ;

(g/betstar) ;

ri-rfil;

1;
(((g/betstar)-(1-delt))/(alf*g"(1-alf)))~(1/(alf-1));
(g~ (1-alf))*k"alf;

(1-alf)*y;

(1-(1/g)*(1-delt)) *k;

y-w-i;

w+ d;

((c-(chihab*c/g)) ~(-tau))-chihab*bet* ((c*g-chihab*c) " (-tau));
0;

®
H
e
=
[ AT

0 Q=< KN
I



(continued)

steady;
shocks;
var ez; stderr 0.01;

end;

stoch_simul (order=2) rf1, ril, erpl, y, z, c, d, mu, k;



3rd order approximation

» same principle of derivation as 2nd order

» Don't forget options periods= in order to compute empirical
moments

> No pruning at 3rd order
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